
Scheme 3: Robinson Annulation/Elimination6,7

Conclusion: This sequence appears to be the most promising 

approach to acquire gram-scale quantities of Key Intermediate 

1. The second step of Scheme 3 is still low yielding and 

produces a wide variety of side products. We are currently 

researching the best method to optimize this reaction. 
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Scheme 1: Consecutive Claisen Condensations on Dioxinone3

Conclusion: Scheme 1 was too low yielding to be able to 

produce a sufficient amount of Key Intermediate 1. 

The above retrosynthetic analysis shows the heavy reliance on 

a large presence of Key Intermediate 1 (resorcilate). 

Spiromastixone J

• Depsidone natural product similar to Diploicin, isolated 

from deep-sea Spiromastix sp. fungus collected at 2,869 

meter depth by autonomous remotely-operated vehicle1

• Isolated in 0.022% yield after three consecutive column 

chromatography separations performed on 58.4 g of extract 

after 50 days of fermentation1

• Exhibits single digit micromolar IC50s towards multi-drug 

resistant Gram-Positive Bacteria such as MRSA1

Table 1: Reported IC50s of Spiromastixone J
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1. Optimization of sequence in Scheme 3. We are currently 

optimizing the reaction conditions on the shortened and 

cheaper methyl version (ethyl crotonate).

2. Completion of Spiromastixone J synthesis.

3. Should sequence in Scheme 3 not provide sufficient 

amounts of desired Key Intermediate 1, an alternative 

pathway we have considered but not yet explored is the 

ortho-lithiation of the resorcilate seen in the Scheme 4 

below.8

Scheme 4: Ortho Lithiation8

1. Niu, S.; Liu, D.; Hu, X.; Proksch, P.; Shao, Z.; Lin, W. J. Nat. Prod. 2014, 

77 (4), 1021–1030. 

2. Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 855–869.

3. Calo, F.; Richardson, J.; Barrett, A.G.M. Org. Lett. 2009, 11(21): 4910-

4913.    

4. Grieco, P.; Nunes, J.; Gaul, M.; J. Am. Chem. Soc. 1990, 112, 4595-4596.

5. Kumar, A. Chem. Rev. 2001, 101 (1), 1-19.

6. Dyke, H.; Elix, J.; Marcuccio, S.; Whitton, A. Aust. J. Chem. 1987, 40, 

431-434.

7. Marmor, R. J. Org. Chem. 1972, 37 (18), 2901-2904.

8. Mikula, H; Hametner, C.; Froehlich, J. Synth. Commun. 2013, 43, 1939-

1946.

References

Scheme 2: Diels-Alder Cycloaddition4,5

Table 2: Reaction Conditions for Diels Alder

Extensive diene decomposition was typically observed. 

Conclusion: After extensive experimentation, the Diels-Alder 

approach to Key Intermediate 1 was abandoned.

Bacterial 

Strain

Resistance 

Phenotype

Mastixone J Levofloxacin

S. aureus ATCC 33591 MRSA 2 0.25

15 MSSA 2 0.125

12-28 MSSA 4 0.25

12-33 MRSA 4 64

IC50 (μM) Diene Dienophile

Methyl TBDMS 1 1 None None RT No Reaction

Methyl TBDMS 1 2 None None RT No Reaction

Methyl TBDMS 2 1 None None RT No Reaction

Methyl TBDMS 2 1 None None 0 C No Reaction

Methyl TBDMS 1 2 Toluene None 80 C No Reaction

Methyl TBDMS 1 1 None AlCl3 0 C No Reaction

Methyl TBDMS 1 1 None LiClO4 RT No Reaction

Methyl TBDMS 1 1 Diethyl Ether LiClO4 RT No Reaction

Methyl TBDMS 1 1 Diethyl Ether LiClO4 60 C No Reaction

Methyl TBDMS 1 1 Water LiCl RT No Reaction

Propyl TBDMS 1 1 None None RT No Reaction

Propyl TBDMS 1 1 None None 150 C No Reaction

Methyl TMS 1 1 None None RT No Reaction
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